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Activation of z-bonds with catalytic amounts of carbophilic ~ Scheme 1. PtCl-Catalyzed Cyclobutene Formation

transition metal cations, most notably' PAU', or Au", constitutes N Cs,CO3 N
a formidable trigger for a host of skeletal rearrangement reactions. /@/\o THF/DMF (3:1) m
Ph

Transformations of this type are simple, safe, and convenient to  Ph N’N—H> 3 (76%)

perform _and usgally result |r1 _a significant increase in strgctural 1 rlL S,o PLCI, (1 mol%), CO (1 atm)

complexity. While the reactivity of alkynes and enynes in the N toluene, 40°C

presence of such catalysts has already been investigated in )

considerable detallthe behavior of alkenes is far less understood.

Various recent examples of Pt- or Au-catalyzed addition reactions /‘/.

to unactivated olefins, however, provide encouraging leads for 4(77%)

further investigations. Table 1. Cyclobutenes by PtCl,-Catalyzed Rearrangement of
As part of our ongoing studies in this fietdywe identified Alkylidenecyclopropanes?

alkylidenecyclopropanéss a potentially useful class of substrates. ™. Product Yield

It was anticipated that coordination of a soft cation to their double Brno.

bond might engender productive isomerizations driven by the m BnO. Q 90%

release of ring strain. Although many different reactions of O 6

alkylidenecyclopropanes induced by noble metal- or Lewis-acid

catalysts are already known in the literatBneost notably their 2 m Q 80%

conversion into homoallylic products, it was hoped that other MeOOC O

conceivable scenarios might be realized that have little or no MeOOC

precedencé. 3 m MeO. 61%
We were pleased to see that treatment of compoBinvdth O 10
M B

L7

catalytic amounts of PtgIn toluene resulted in the clean formation e0 r
of cyclobutenet (Scheme 1Y.In line with previous findings from

_ T 4 Meo 50%"
our group, the reaction was significantly accelerated when per- O 12
formed under an atmosphere of G@nder these conditions, the OMe
catalyst loading can be reduced to 1 mol %, providing product TBSO
in 77% isolated yield. Table 1 shows the scope of this transforma- 5 W TBSO\/\/Q 93%
tion which is applicable to alkylidenecyclopropanes with either
aliphatic or aromatic substituents at the double bond. Electron- ¢ P“/w Ph/\/Q 16 95%

withdrawing as well as electron-donating substituents are well
accommodated. It is also worth mentioning that the substrates were a a| reactions were performed with Pt(5 mol %) in toluene (0.1 M)
conveniently formed by a new variant of the Juliéocienski at 80°C under CO (1 atm) unless stated otherwise = 0.02 M.
olefination? simply on exposure of the corresponding aldehyde to
cyclopropy! sulfone2 and CsCO; in THF/DMF at 70°C. Since

Scheme 2. Proposed Mechanism

P{Cly'(CO),
the olefination occurs under Barbier conditions and no separate / PtCIz(CO),,
deprotonation step is necess&hthis procedure is highly user R/\V R/\@
friendly. For details, consult the Supporting Information. R/\V\_//
A tentative mechanism for the observed cyclobutene formation
is depicted in Scheme 2. One of the possible resonance structures PtCI>(CO)n R}?q < R

cation! This “nonclassical” species is prone to rearrange to the
corresponding cyclobutenyl cation complex which likely has some
carbene charactérand evolves by 1,2-hydrogen shift to the final
product. This interpretation gains credence by the deuterium-
labeling experiment depicted in Scheme 3. In line with the proposed CH,Cl, to the crude mixture formed upon Pj@atalyzed re-
mechanism, product-D is exclusively labeled at the 2-position,  arrangement of substrafeZ bearing an allyl ether entity led to
with a deuterium incorporation at97% (NMR). chromenel9 in good overall yield. This product originates from

The novel cyclobutene formation can be linked to further catalytic an efficient ROM/RCM cascadfeof cyclobutenel 8initially formed
transformations. Thus, addition of Grubbs catalyst (5 mdP%nd (Scheme 4).
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of the complex formed by coordination of P#2 to the double eptCI (€O)
bond of the substrate constitutes a stabilized cyclopropylmethyl R’Q \ PICly (CO)" eFHZ -

PtCIz CO)n
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Scheme 3. Deuterium-Labeling Experiment observation that substra®® provides the dimeric olefi26 which
D PtCl, (1 mol%) Q likely originates from the same type of zwitterionic intermediate.
X CO (1 atm) Since the arene i25 is somewhat less activated, elimination by
—_— > O D loss of proton outperforms the FriedeCrafts pathway and leads
Ph 3.p  loluene 40°C Ph 4-D to the observed produ@s.

In summary, we have shown that alkylidenecyclopropanes, on
activation with catalytic amounts of Pt3ir, preferentially, PtGl
CO (1 atm), undergo previously unknown ring expansions, thus
MeO sz (10 mol%) o opening a conveniz_ent new entry into vario_usly s_,ubs_,tituted cy-
A clobutenes and derivatives thereof. Further investigations on this
m toluene (0.1 M) O and related types of noble metal-catalyzed rearrangements are

80°C ongoing and will be reported in due course.

Scheme 4. Cyclobutene Formation/ROM/RCM Cascade

O/\/
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Clo(PCys),Ru=CHPh (5 mol%) -

Z

add CH,Cl, (0.005 M)

Scheme 5. PtCl,-Catalyzed Dimerization . . . . o .
Supporting Information Available: Experimental details, including

MeO CLPt. the formation of alkylidenecyclopropanes by Jull&ocienski olefi-
© X PtCly (5%) | MeO . . -~ _ _
2 nation. This material is available free of charge via the Internet at http://
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